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We show how one-dimensional photonic crystal structures which suffer from a weak random disorder in the
layer lengths may give rise to strong localization of light. Using the transfer matrix method we numerically
study the effects of this localization in media with a second-order nonlinearity. Localization has a deep impact
on the second-harmonic generation efficiency and may give rise to very strong enhancement in correspondence
to the localized wavelengths.
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Localization of light may be obtained with a mechanism
very similar to the Anderson localization of electrons in solid
state physics. Indeed, in the presence of a random perturba-
tion of the material dielectric constant Anderson localization
may occur if the Ioffe-Regel conditionk,,1 swhere, is the
elastic scattering mean free path andk is the optical wave
vectord is met. The basic mechanism for light localization is
coherent back-scattering, that is thus considered as the pre-
cursor for Anderson localization. Although the existence of
coherent back-scattering has been verified in a variety of
weakly scattering systems, the mean free path, is always
much larger thanl, thus precluding localization. In the pio-
neering work by Johnf1g it was shown that if an underlying
order in the form of some kind of periodicity is introduced,
then the large scale geometric Bragg resonances modify sig-
nificantly the system behavior. Indeed, localization is readily
observed even with a very weak random perturbation of an
otherwise perfectly periodic structure. This may be explained
by noting that thek vector in the Ioffe-Regel condition must
be replaced byq=k−G swhereG is the periodic crystal lat-
tice vectord. The periodic structure introduces Bragg reflec-
tion resonances and corresponding stop bands and, at the
border of the lowest frequency band,q→0, so that the Ioffe-
Regel condition is easily satisfied.

Much interest has been attracted by such a possibility, for
example, for random lasers. The high optical mode density
associated with light localization and the relatively short lo-
calization length opens up the possibility of obtaining effi-
cient, extremely compact, and easy to fabricate lasers. In this
Brief Report we report numerical simulations that show how
it is also possible to apply the same principles to nonlinear
optical wavelength conversion. We consider a one-
dimensionals1Dd photonic crystal waveguide that exhibits a
series of Bragg resonances made from a material that pos-
sesses a second-order nonlinearitysxs2dd. When a certain
amount of disorder is applied to the individual layer lengths
that compose the crystal, we find that light localization
readily occurs and gives rise to an enhancement of many
orders of magnitude of the second harmonic generation

sSHGd efficiency in both forward and backward directions.
We performed a series of numerical simulations using the

transfer matrix technique applied to the particular case of
SHG as described by Jeong and Leef2g. This method is
particularly indicated for the simulation of randomly per-
turbed periodic structures and has been used to describe the
behavior of linear random 1D systemsf3g, also in the pres-
ence of gainf3,4g and second-order nonlinearityf5g. The
fundamentalsFFd and second-harmonicsSHd modes are ap-
proximated as plane waves with refractive indices given by
the waveguide mode indices; all other modes are disre-
garded. The simplicity of this approach comes at the expense
of a lack of information regarding the coupling to leaky or
radiation modes, however, losses may be evaluated by other
means, as we discuss further on. Furthermore, we performed
the simulations in the undepleted pump approximation. This
approach remians valid as long as the SHG conversion effi-
ciencies remain lower than,1%. We therefore investigate
only cases which fall in this regime without compromising
the generality of our results. The particular system under
investigation is an AlxGa1−xAs mesa waveguide described in
detail elsewheref6g and schematically represented in the in-
set in the lower graph of Fig. 1. The grating width varies
from 500 to 700 nm between adjacent layers and the effec-
tive waveguide mode index was calculated using a commer-
cial mode-solver f7g: nv

sad,sbd=2.89/3.06 and n2v
sad,sbd

=3.39/3.42 are the FF and SH effective indices in each layer,
respectively. Thexs2d nonlinearity is taken as 100 pm/V. We
started by considering a periodic structure that is made up of
an elementary cell composed assb-3a-b-3a-3b-3ad with a
=l0/4nv

sad and b=l0/4nv
sbd sl0 is taken as 1550 nmd. Note

that the arrangement of this structure does not give rise to
phase-matching of any kind. We initially consider the case in
which the “3b” layer sthat may be viewed as a defect in an
otherwise periodic structure withb-3a elementary celld is
subject to a random fluctuation,dL, that has a Gaussian dis-
tribution centered in 0 and with a standard deviations. The
FF pump power is taken as 100 mW and the mode area in
the mesa waveguide is 2mm2.

We point out that although the ensemble average over
many realizations is usually considered in the analysis of
random systems, here we are interested in the fine features of*Electronic address: daniele.faccio@uninsubria.it
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individual structures. In Fig. 1 we show in the top three
graphs the fundamental transmissionsFF Td and the SH gen-
erated in the forwardsSHfwdd and backwardsSHbwdd direc-
tions with s=10 nm. The dotted lines in these graphs repre-
sent the response of the perfectly periodic photonic band-gap
sPBGd structure, i.e., with no randomness.s=10 nm is a
relatively small, 2.6%, fluctuation of the defect layer thick-
ness but nevertheless gives rise to some localization, with
intensity peaks located in particular near the band-gap edges.
In the bottom graph we show the field envelopes inside the
medium for the FF wavelengths1565 nmd and for the SH. A
weak localization of the FF can be seen. This in turn implies
a slower energy transport velocityf8g, i.e., a higher FF wave-
length mode density that thus explains the corresponding en-
hancement of the SHG efficiency. Note that the large oscil-
lations in the SH field amplitude are due to the phase-
mismatch between FF and SH. If we increase the amplitude
of the fluctuations we observe that the localization peaks
tend to shift towards the center of the PBG. This feature has
been observed elsewheref3g and an example fors=30 nm
s7.9% mean fluctuation of the defect lengthd is shown in Fig.
2. The solid lines are for the structure with randomness and
the dotted lines are without randomness. Note the well-
pronounced peaks in the SHG efficiency in both forward and
backward directions. This indicates the formation of a cavi-
tylike resonance. In the lower graph, plotted for the localiza-
tion wavelength, 1552.5 nm, we can see how the the FF field

ssolid lined is much more localized with a localization length
that is smaller than the sample length. The higher mode den-
sity at this wavelength gives rise to efficient SHGsdashed
line, 3106d with more than two orders of magnitude en-
hancement with respect to the nonphase-matched periodic
grating.

A comment on the effect of sample length. We should
consider some typical lengths: the grating lengthLg, the ab-
sorption lengthLa, defined as the length over which the FF
field is attenuated by a factor 1/e due to absorption or in-
elastic scattering, and the localization lengthj, that may be
defined as the distance over which the spatial localized-field
peak value decreases by 1/e f3g. If La is much larger thanj
or Lg then it will have little or no effect on the localization
mechanismf9,10g. We have carried out preliminary measure-
ments on test mesa waveguides with the same structure de-
scribed here and found losses of the order of 3 to 4 dB/mm,
i.e., La.1 mm slosses of the same order of magnitude have
also been reported for similar structuresf11gd. Here Lg
,50 mm so that absorption losses may be safely neglected.
Therefore, ideally, the only limiting factor on the cavityQ, or
on the FF mode density, is leakage of light outside of the
grating due to its small length. As the grating length is in-
creased we observe a pronounced increase in the SHG effi-
ciency. For example, for a structure 200mm s800 layersd
long we obtain −5 dB or higher conversion efficiencies, i.e.,
300% /W swhich is extremely high if compared to a typical
conversion efficiency value of 500% /W in a 4 cm long pe-
riodically poled lithium niobatesPPLNd waveguidef12gd and
pump depletion must be accounted for. On the other hand, if
less than 200 layers are considered,j becomes comparable to
Lg and the localization quickly disappears.

We also considered the effect of increasings on the en-

FIG. 1. Top three graphs show the transmission of the FF wave
sFF Td and the generated SH in the forwardsSHfwdd and backward
sSHbwdd directions versus the FF wavelength for the PBG structure
described in the text. The 3b “defect” has random length fluctuation
with s=10 nm. The bottom graph shows the FF and SHfwd
s3106d intensity profile vsz inside the crystal for a total number of
200 layers and at 1565 nm FF wavelength. In the inset of the lower
graph we show a schematic of the mesa waveguide. All vertical
scales are in arbitrary units.

FIG. 2. Same graphs as in Fig. 1 but withs=30 nm. The lower
graph is plotted for 1552.5 nm FF wavelength. All vertical scales
are in arbitrary units.
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semble average of the SHG efficiency, when fluctuation is
located every five layers. We repeated the simulations with a
300 layer structure so as to guarantee thatj,Lg and then
took the average of the maximum SHG efficiency over 20
separate realizations. Figure 3 shows how an increasings
gives an increase in SHG. However, fors.40 nm the effi-
ciency starts to drop on average.

Indeed we find that for larges randomness starts to pre-
vail over the ordered PBG structure and the localization
length starts to increase so thatj,Lg is no longer satisified
on average. A very similar behavior is observed in the lasing
threshold value for partially random structures with gainf3g.
In the inset of Fig. 3 we show the unperturbed PBGsdashed
lined that is replaced by a pseudogap fors=30 nm.

So far we have only considered the particular case of
random fluctuations on a defect layer. We note that the same
effects described above were observed even if we consider a
regular grating with no defectssbut with the random fluctua-
tion applied only every five layersd. We can also consider the
more general case in which the fluctuation affects all layers
in such a way that the layers are paired and the fluctuation is
taken by addingdL to one layer and subtractingdL from the
adjacent one. This is very similar to what may occur during
the etching process of the mesa waveguide grating where an
overetch will result in thinner “fins” and wider “holes.” Such
a case has already been considered fors smaller than 20 nm
f5g and no localization was observed. Figure 4 shows the
results for a particular realization of this type withs
=30 nm. It is interesting to note that now localization takes
place albeit rather weakly and is concentrated at the band-
gap edges. This situation is very similar to that observed with
the randomness placed every five layers and with a much
smallers=10 nm. This may be explained by observing that
when introducing a random fluctuation on all layers we are
effectively perturbing and destroying the periodic underlying
PBG structure, i.e., we are destroying the balance between

order and disorder that gives rise to efficient localization
f10g. Indeed, although in principle random 1D structures al-
ways exhibit Anderson localizationsfor a sufficiently long
mediumd, the presence of an underlying periodic PBG struc-
ture greatly assists the disorder in creating wave functions
that are localized over very small regions in spacef9g. Any
situation that is somehow intermediate between the two ex-
treme cases illustrated heresrandomness in only one layer in
each elementary cell or in every layerd will show a response
that is also intermediate between these, i.e., increasing the
density of layers that have a random perturbation will gradu-
ally shift the structure from the “nearly ideal” PBG structure
with strong and efficient localization toward that of a com-
pletely random structure with a weak underlying periodicity
and a low localization enhancement.

We now consider the effect and possibility of coupling to
radiation modes. The mechanism underlying the SHG en-
hancement presented here is very similar to that due to a
mode-density increase in a cavity closed by two mirrors. It
has been underlined that coupling to radiation modes at the
cavity edges is the cause of high losses in such systems: one
possible solution is to make the confinement gentler with a
less abrupt change in passing from the cavity to the mirror
f13g. The structure we have presented here may be consid-
ered as an extreme example of such an approach: we have an
“effective” cavity and mirrors that are all the same object and
there is no change whatsoever in passing from one to

FIG. 3. Dependence of SH conversion efficiency on the error
sigma for the structure described in the text. Each point is taken as
the average over 20 different realizations and the error bar indicates
the standard deviation around the mean value. The solid line is a
polynomial fit that serves only as a guide for the eye. In the inset we
plot the normalized trasmissivity versus wavelength for the per-
fectly periodic structure and for the structure with random fluctua-
tions ss=30 nmd, averaged over 20 different realizations.

FIG. 4. Top three graphs show the transmission of the FF wave
sFF Td and the generated SH in the forwardsSHfwdd and backward
sSHbwdd directions vs the FF wavelength for PBG structure de-
scribed in the text. Each layer has a random length fluctuationss
=30 nmd with alternating signs between successive layers. The bot-
tom graph shows the FF and SHfwds3106d intensity profile vsz,
inside the crystal for a total number of 200 layers and at 1562.5 nm
FF wavelength. All vertical scales are in arbitrary units.
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the other, i.e., a local density modes of the localization re-
gion and so we may expect to be able to neglect any addi-
tional out-of-plane losses due to localization. However, fu-
ture work will consider the full three-dimensional field
distribution of the optical modes in the unperturbed Bragg
grating and the Fourier analysis proposed by Akahaneet al.
f13g shall be used to study and reduce coupling losses to
radiation modes.

One last issue regards the maximumQ actually achiev-
able. Very high powers may be achieved inside the material
that may, in turn, lead to catastrophic optical damagesCODd,
a well-known problem in semiconductor laser devices. How-
ever, we note that COD is usually observed at the laser facets
f14g while, in the structure presented here, high powers are
achieved only inside the grating so that a much higher COD
threshold is to be expected. Indeed, similar waveguide struc-
tures have been irradiated with 800 W peak power levels
with no reported degradationf15g.

In conclusion we have reported the possibility of using
light localization in a 1D PBG structures with a certain de-

gree of randomness to enhance second-harmonic generation
by many orders of magnitude. Preliminary measurements on
mesa waveguides have been carried out and our simulations
indicate that SHG enhancement due to localization should be
observable in real systems. As a final comment regarding the
possible applications of random perturbation induced local-
ization, we note that nonlinear interactions based on wave-
guide photonic crystals require an extremely precise control
on the periodicity and duty cycle of the crystal. On the basis
of the technology available today we may expect a rather
low yield from an industrial production. In fact, efficient
second harmonic generation has still to be demonstrated in
such waveguides. On the other hand, we show that use of
randomly perturbed crystals will statistically produce local-
ization and high SHG efficiency. If the sample is sufficiently
long, localization will occur in each sample and the statistics
regard only the SHG efficiency. Depending on the tolerance
required on this value, we may expect the yield of a ran-
domly perturbed PBG to be much higher than that from a
perfectly ordered one.
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